
35

ISSN 0361-7688, Programming and Computer Software, 2019, Vol. 45, No. 8, pp. 35–46. © Pleiades Publishing, Ltd., 2019.
Russian Text © The Author(s), 2019, published in Programmirovanie, 2019, Vol. 45, No. 00000.

A Method for Analyzing Code-Reuse Attacks
A. V. Vishnyakova,*, A. R. Nurmukhametova,**,

Sh. F. Kurmangaleeva,***, and S. S. Gaisaryana,b,****
a Ivannikov Institute for System Programming, Russian Academy of Sciences,

Moscow, 109004 Russia
b Moscow State University, Moscow, 119991 Russia

*e-mail: vishnya@ispras.ru
**e-mail: nurmukhametov@ispras.ru

***e-mail: kursh@ispras.ru
****e-mail: ssg@ispras.ru

Received February 13, 2019; revised March 29, 2019; accepted March 29, 2019

Abstract—Nowadays, ensuring software security is of paramount importance. Software failures can have sig-
nificant consequences, and malicious vulnerability exploitation can inflict immense losses. Large corpora-
tions pay particular attention to the investigation of computer security incidents. Code-reuse attacks based on
return-oriented programming (ROP) are gaining popularity each year and can bypass even modern operating
system protection mechanisms. Unlike ordinary shellcode, where instructions are placed sequentially in
memory, a ROP chain consists of multiple small instruction blocks (called gadgets) and uses the stack to
chain them together. This makes the analysis of ROP exploits more difficult. The main goal of this work is to
simplify reverse engineering of ROP exploits. A method for analyzing code-reuse attacks that allows one to
split the chain into gadgets, restore the semantics of each particular gadget, and restore the prototypes and
parameter values of the system calls and functions invoked during the execution of the ROP chain is pro-
posed. The semantics of each gadget is determined by its parameterized type. Each gadget type is defined by
a postcondition (Boolean predicate) that must always be true after the gadget execution. The proposed
method was implemented as a software tool and tested on real-world ROP exploits found on the Internet.

DOI: 10.1134/S0361768819080061

1. INTRODUCTION
Nowadays, ensuring software security is of para-

mount importance. To make software secure, static
analysis [1], dynamic analysis [2], and their combina-
tions [3] are used in the stage of software development.
Software is widely used in everyday life in such devices
as computers, smart phones, cars, ATMs, city infra-
structure objects, medical equipment, and Internet-
of-things technologies. Software failures can have sig-
nificant consequences, such as financial losses, degra-
dation communication means, delays in the operation
of emergency services, and even harm health. More-
over, malicious vulnerability exploitation can inflict
huge losses. According to the National Institute of
Standards and Technology, thousands descriptions of
new vulnerabilities are yearly published in the Com-
mon Vulnerabilities and Exposures (CVE) (see Fig. 1)
[4, 5]. Large corporations pay particular attention to
the investigation of computer security incidents.

To exploit vulnerabilities and bypass modern oper-
ating systems protection mechanisms, the return-ori-
ented programming (ROP) is often used. ROP is a
code-reuse technique that allows one to bypass the

protection mechanism called data execution preven-
tion (DEP) that does not allow a memory region be
simultaneously available for write and execution. ROP
is also useful to bypass modern implementations of the
address space layout randomization (ASLR) that leave
a part of the address space non-randomized. For
instance, in Linux the program code base address
often remains constant, and some Windows DLLs are
loaded at fixed addresses. An intruder uses pieces of
code from the non-randomized program address
space; these pieces are called gadgets. Each gadget
performs certain computations (e.g., adds the values of
two registers) and transfers control to the next gadget.
Gadgets are connected into a chain of sequentially
executed pieces of code. Thus, using a chain of gad-
gets, one can perform malicious actions.

The application of fine-grained ASLR [6] improves
the stability of the system under ROP attacks; however,
the vast majority of operating systems currently use
granulation up to a module.

A gadget is an instruction sequence that is ended by
the control transfer instruction (ret). Unlike an ordi-
nary program, ROP instructions are not placed

vishnya
Typewritten Text
This is a preprint of the "A Method for Analyzing Code-Reuse Attacks" accepted for publication in Programming and Computer Software. © Pleiades Publishing, Ltd., 2019. http://pleiades.online/

36

PROGRAMMING AND COMPUTER SOFTWARE Vol. 45 No. 8 2019

VISHNYAKOV et al.

sequentially in the memory, but are decomposed into
small pieces of code called gadgets. Gadgets are con-
nected by instructions that get the address of the next
gadget from the stack. This technique complicates the
analysis of ROP chains.

An exploit is a program, input data, or an instruc-
tion sequence that use a software vulnerability to make
the program behave in an unspecified fashion. The
aim of this paper is to simplify the reverse engineering
of ROP exploits.

We propose a method for analyzing code-reuse
attacks that helps restore the semantics of a ROP
chain, i.e., decompose the chain into gadgets, deter-
mine the semantics of individual gadgets, and recover
the functions and system calls, as well as their argu-
ments, invoked during the chain execution.

The paper is organized as follows. In the second
section, we review the attack techniques and protec-
tion mechanisms that were precursors of ROP
(Subsection 2.5). In Section 3, we discuss the known
methods of analyzing ROP attacks. In Section 4, we
describe the proposed method for analyzing code-
reuse attacks. In the fifth section, we discuss imple-
mentation details of this method. In Section 6, we
present practical application results.

2. REVIEW OF ATTACKS AND PROTECTION
MECHANISMS

In this section, we review the stack buffer overflow
attacks. We describe protection mechanisms used in
operating systems, such as data execution prevention
(DEP) and address space layout randomization
(ASLR). In subsection 2.5, we define return-oriented
programming, which is a technique of exploiting stack
buffer overflow; it allows one to bypass DEP and mod-
ern implementations of ASLR.

2.1. Stack Buffer Overflow
The stack buffer overf low vulnerability occurs

when the size of data written to a buffer on the stack
exceeds the size of this buffer [7]. For example, in the
C program below, the vulnerable function vul does
not check the length of the string str, which is written
to a buffer buf of fixed size on the stack. If the length
of the first command line argument argv[1] is
greater than or equal to the size of buf, then the stack
buffer overflow occurs.

void vul(char *str) {
char buf[512];
strcpy(buf, str);

}
int main(int argc, char *argv[]) {

vul(argv [1]);
return 0;

}
Figure 2a shows the stack frame of the function

vul before overflow. In the x86 architecture, the stack
grows from greater addresses to lower ones (from the
top to the bottom in the figure). The arguments of a
function are pushed on the stack one-by-one from the
right to the left. As the function is called, the return
address is pushed on the stack, after which the func-
tion can store the previous value of the ebp register
and allocate memory on the stack for local variables
(in the case under examination, for the buffer buf).
The data are written to the buffer in the order of grow-
ing addresses (from bottom to top in the figure). As a
result of the buffer overflow, memory locations above,
including the return address, are rewritten; after this,
the program almost always crashes.

The exploitation of the stack buffer overflow vul-
nerability allows the intruder to execute an arbitrary
code. Consider the situation when an intruder con-
trols the values of the first command line argument
argv[1] and, therefore, the values written to buf.
In this case, the intruder can rewrite the return address

Fig. 1. Tens of thousands of vulnerabilities (CVE) by year.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 45 No. 8 2019

A METHOD FOR ANALYZING CODE 37

by a pointer to a malicious code (Fig. 2b). Thus, after
returning from the function vul, the control will be
transferred to the malicious code formed by the intruder.
Typically, this code opens the command shell of the
operating system. That is why it is called a shellcode. To
avoid harmful consequences of stack buffer overflow,
various protection mechanisms were invented.

2.2. Data Execution Prevention (DEP)
The data execution prevention (DEP) is a protec-

tion mechanism in the operating system that prevents
applications from executing code in the memory
regions containing data. An attempt to execute code in
such a region throws an exception and causes the pro-
gram crash. In particular, the code on the stack and in
the heap cannot be executed, which prevents the exe-
cution of malicious code in them. This technique is
successfully used in Windows, Linux, and other oper-
ating systems.

2.3. Return-to-libc Attack
The return-to-libc attack can be used to bypass

DEP. The idea underlying this kind of attack is to
replace the return address with the address of a library
function, e.g., the function system from the library
libc.

Figure 2c shows the state of the stack after over-
flow. The return address is rewritten by the address of
the function system(const char *command).

Above it, there is an arbitrary return address from the
function system and its only argument, which is the
pointer to the null-terminated string "/bin/sh" that
resides above the pointer on the stack. Therefore, after
the return from the function vul, the library function
system(“/bin/sh”) will be called, which in turn
will open the command shell of the operating system.

2.4. Address Space Layout Randomization (ASLR)

The address space layout randomization (ASLR) is
an operating system protection technique that makes it
possible to place the key elements of the process (pro-
gram image, stack, heap, and dynamic libraries) at dif-
ferent addresses when the executable file is loaded.
This technique complicates the execution of return-
to-libc attacks because the addresses of library func-
tions are not known before the program is loaded and
they vary for different runs.

Note that the randomization of addresses of exe-
cutable sections of a program or library requires that
they are compiled into a position-independent code,
which is not always done. For instance, in Linux the
program code is often loaded to a constant address,
and some Windows dynamic libraries are loaded to
fixed addresses. Therefore, under modern implemen-
tations of ASLR, a part of the program address space
remains non-randomized.

Fig. 2. Stack frame of the function vul and different buffer overflow exploitation techniques. (a) Stack frame of the function vul
before overflow. (b) Location of the malicious code on the stack. (c) Return-to-libc attack.

(a) (b) (c)

38

PROGRAMMING AND COMPUTER SOFTWARE Vol. 45 No. 8 2019

VISHNYAKOV et al.

2.5. Return-Oriented Programming (ROP)
The return-oriented programming (ROP) [8] is a

stack buffer overflow exploitation technique; in
essence, this is a generalization of the return-to-libc
attack. This technique can also be used to bypass
DEP; however, it is more dangerous because it can be
used to bypass modern implementations of ASLR
when a part of the address space remains non-ran-
domized (Subsection 2.4).

ROP is based on using sequences of instructions in
non-randomized executable memory regions that end

in the control transfer instruction (ret). Such
sequences of instructions are called gadgets. Note that
the x86 architecture does not require the instruction
addresses to be aligned; i.e., it allows the execution of
instructions located at arbitrary memory addresses.
Therefore, an instruction sequence in a program can
contain a gadget that was not present in the program
code. Below, we show a binary and assembler codes of
a gadget contained in the instruction sequence of the
original program [25].

f7c7070000000f9545c3 test edi, 0x7;
setnz BYTE PTR [ebp-0x3d]

c7070000000f9545c3 mov DWORD PTR [edi], 0xf000000;
xchg ebp, eax; inc ebp; ret

Gadgets are collected into chains, and their
addresses are placed on the stack starting from the
return address so that the first gadget transfers control
to the second one, the second gadget transfers control
to the third one, and so on. Thus, using a chain of gad-
gets, one can execute malicious code.

Figure 3 shows the state of the stack after placing a
ROP chain on it. This chain writes the value mem-
Value to the address memAddr. The return
address is rewritten by the address of the first gadget.
After returning from the function where the overflow
occurred, the control is transferred to the first gadget,

which loads memValue from the stack into the regis-
ter eax. After return (after the execution of the
instruction ret), the first gadget transfers control to
the second gadget, which in turn will load the value of
memAddr into the register edx. Next, the third gadget
will save the value of the register eax (memValue) to
the address edx (memAddr). Next, the control is
transferred to the fourth gadget, etc.

Below, we show the same ROP chain in binary
form; it writes the value "/bin" to the address
0x0830caa0. An intruder places this sequence of
bytes on the stack starting from the return address.

Fig. 3. The state of the stack after the ROP chain storing memValue to memAddr is written on the stack.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 45 No. 8 2019

A METHOD FOR ANALYZING CODE 39

00000000 47 65 06 08 2f 62 69 6e 3d 76 07 08 a0 ca 30 08 |Ge../bin=v….0.|
00000010 b5 8b 08 08 |…|
00000014

3. REVIEW OF EXISTING SOLUTIONS
In this section, we describe the existing solutions to

determine the gadget semantics and analyze code-
reuse attacks.

3.1. Gadget Semantic Definition
Schwartz et al. [9] proposed to define the gadget

semantics by its assignment to types presented in
Table 1. The set of gadget types specifies a new
instruction set architecture (ISA) in which each gadget
type plays the role of instruction. The semantics of
each gadget type is defined by a postcondition (Bool-
ean predicate) that must always be true after the
gadget execution.

It is said that the instruction sequence satisfies
the postcondition if, for any initial state, the post-
condition is true after the execution of . The initial
state consists of initial register and memory value
assignments.

Note that a gadget may be simultaneously assigned
to more than one type. For instance, the gadget push
eax; pop ebx; pop ecx; ret simultaneously
copies eax to ebx and loads a value from the stack into
ecx, which corresponds to the types MoveRegG: ebx
eax and LoadConstG: ecx [esp + 0].

3.1.1. Semantic analysis. To find out if an instruc-
tion sequence satisfies the postcondition ,
Schwartz et al. [9] use the well-known technique of
formal verification—computation of the weakest pre-
condition [10]. Put simply, the weakest precondition
wp(, ) for the instruction sequence and the post-
condition is the Boolean precondition that describes
when terminates in the state satisfying . The weak-

est preconditions are used to verify that the gadget
semantics definition always holds after executing the
instruction sequence . To this end, it is sufficient to
verify that

If this formula is true, then is always true after
the execution of ; therefore, is a gadget of the
semantic type .

However, the formal verification of gadgets turned
out to be very slow in practice. To speed up the process
of determining if a gadget can be assigned to one type
or another, the gadget instructions are preliminary
executed on random input data several times, and the
validity of is checked. If is false after at least one
execution, then the instruction sequence cannot be
assigned to the type . Thus, the more complicated
computation of the weakest precondition is performed
only if is true for all executions.

The execution on random input data can also be
used to find possible values of the gadget parameters
(Table 1). For instance, by examining the values of
registers and read memory addresses, it is possible to
determine the set of possible values of Offset for the
LoadMemG gadget that loads value to register from
memory.

3.2. deRop
In distinction from using the traditional shellcode,

which is embedded in the process memory, the return-
oriented programming makes it possible to perform
arbitrary computations by reusing the code that is
already available in the memory. For this reason, it is
difficult to use the traditional binary code analysis

@

(
@

(@

(@

(@ (
@

(@

(

(@(,) .wp true
@

((
@

@ @

@

@

Table 1. Gadget types. [Addr] denotes memory access at the address Addr, ∘ stands for a binary operation, a b means that
the final value of a equals the initial value of b, and X ∘ Y is short for X X ∘ Y.

Type Parameters Definition of semantics

NoOpG — Does not change memory or registers
JumpG AddrReg IP AddrReg
MoveRegG InReg, OutReg OutReg InReg
LoadConstG OutReg, Offset OutReg [SP + Offset]
ArithmeticG InReg1, InReg2, OutReg, OutReg InReg1 InReg2
LoadMemG AddrReg, OutReg, Offset OutReg [AddrReg + Offset]
StoreMemG AddrReg, InReg, Offset [AddrReg + Offset] InReg
ArithmeticLoadG AddrReg, OutReg, Offset, OutReg [AddrReg + Offset]
ArithmeticStoreG AddrReg, InReg, Offset, [AddrReg + Offset] InReg

vishnya
Cross-Out
B

vishnya
Cross-Out
I

40

PROGRAMMING AND COMPUTER SOFTWARE Vol. 45 No. 8 2019

VISHNYAKOV et al.

tools for analyzing ROP attacks. To resolve this diffi-
culty, the tool deRop [11] was proposed. This tool
reduces the ROP exploit to the semantically equivalent
shellcode, which can be analyzed using the available
tools. The authors of [11] mainly use static analysis
and identify the following difficulties in the analysis of
ROP attacks:

Detection of gadgets. When the stack buffer over-
flow is exploited, (that will rewrite the return address)
a buffer containing arbitrary insignificant data is writ-
ten on the stack before the address of the first gadget.
Moreover, some memory locations may be skipped
between the addresses of the first and second gadgets
(e.g., if the function in which the overflow occurs
clears the arguments from the stack using the instruc-
tion ret n). Even though deRop tries to use static
analysis whenever possible and avoid dynamic analy-
sis, the first two gadgets are detected using a debugger.

Keeping track of the stack pointer. In ROP exploits,
the stack pointer is used to obtain the address of the
next gadget in the same way as the instruction pointer
(program counter) is used to obtain the address of the
next instruction. Therefore, in order to detect the next
gadget, the stack pointer must be tracked.

Location of the stack and constants. Shellcode usu-
ally uses mov reg, imm for loading constants into
the register, while ROP usually use pop reg. The
location of the stack in the original ROP chain differs
from the stack location in the semantically equivalent
shellcode. Therefore, it is required to track the loca-
tion of constants on the stack.

Function calls. Some gadgets in the ROP chain are
used for calling functions. Such calls must be detected
and the functions must be called in the conventional
way. Moreover, the values of arguments of the func-
tion call (including the arguments that are constants or
pointers) must be determined.

Loops. ROP chains may contain loops. One must
know how to detect them and determine the condition
of loop termination.

3.2.1. Postprocessing. As soon as all gadgets have
been analyzed, a number of postprocessing steps are
performed in order to simplify the output code.

Data in memory. The values of operands of instruc-
tions that access memory are computed, and the oper-
ands are replaced by constants.

Zero bytes. It is typically required that the shell-
code contains no zero bytes because this can lead to
truncation of the shellcode after certain operations
(e.g., strcpy). This difficulty is resolved by replacing
all zero bytes by nonzero values and adding a decoder
to the beginning of the shellcode that will reconstruct
the original values.

Return address. The return address in the exploit is
replaced by the address of the beginning of the result-
ing shellcode.

3.3. ROPMEMU
ROPMEMU [12] is a framework for analyzing

complex code-reuse attacks. The authors use the
dynamic approach to binary code analysis and distin-
guish the following problems in the analysis of ROP
attacks (C1–C3 have already been mentioned in
Subsection 3.2):

[C1] Verbosity. The majority of ROP gadgets con-
tain spurious instructions. For example, the gadget
designed for incrementing eax can also load (pop) a
value from the stack before transferring the control to
the next gadget (ret).

[C2] Stack-based instruction chaining. In distinc-
tion from ordinary programs, in which instructions are
placed sequentially in the memory, ROP exploits are
split into small gadgets that are connected into a chain
by indirect control f low instructions (ret).

[C3] Lack of values of constants. ROP chains are
typically constructed from parameterized gadgets
(e.g., load an arbitrary value into the rax register) that
use parameters stored on the stack.

[C4] Conditional branches. In distinction from the
traditional change of the instruction pointer, a branch
condition in a ROP chain changes the stack pointer.
This means that a simple conditional jump is imple-
mented with a number of gadgets (see [13, pp. 18–
19]). To reduce the chain to a more readable code, it is
necessary to identify these conditional branches and
replace each of them with a single branch instruction.

[C5] Return to functions. Function calls are typi-
cally implemented in ROP as simple return (ret) to
the function’s entry point. Since normal gadgets are
also often extracted from the code located inside
libraries, it is necessary to distinguish a function call
from another gadget.

[C6] Dynamically generated chains. A ROP chain
does not necessarily completely resides in the mem-
ory; rather, gadgets that prepare the execution of other
gadgets in future may be used.

[C7] Stop condition. The authors assume that the
analyst is able to locate the beginning of a ROP chain
in memory. However, the emulation process must be
terminated after all the gadgets have been extracted.

The ROPMEMU framework uses a set of various
techniques for analyzing ROP chains and for recon-
structing the equivalent code in the form that can be
analyzed using traditional reverse engineering tools,
such as IDA Pro [14]. It is assumed that the analyst has
at his disposal the memory dump and the entry point
of (the first) ROP chain in it. The other dynamically
generated chains are reconstructed by the framework,
which has five main phases of analysis.

3.3.1. Multipath emulation. At this step, the assem-
bler instructions used by the ROP chain (С2) are emu-
lated. All possible branches are examined, and for
each execution path an independent trace (annotated
with the values of registers and memory) is generated.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 45 No. 8 2019

A METHOD FOR ANALYZING CODE 41

The emulator also detects returns into library func-
tions, skips their body, and simulates their execution
by generating spurious data and return value (С5).

The emulator first reads the memory content from
the dump and maintains the shadow memory [15].
The stop condition (C7) is determined by a set of heu-
ristics based on the locality principle (the emulator
detects a large relative increment of the stack pointer)
and the gadget length not taking into account the
detected function calls. As soon as the stop condition
holds true, the contents of the shadow memory and
the execution trace are saved to disk and are explored
to detect new ROP chains. If new ROP chains are
detected, then the emulator is restarted to analyze the
next chain and so on until all dynamically generated
chains are detected and analyzed (С6).

For ROP chains with a complex control f low, the
simple approach based on emulation is insufficient for
the analysis of the entire ROP exploit. Indeed, the
coverage is limited by the executed branches only,
which often depend on the dummy return values of
functions generated by the emulator. This problem can
be resolved using multipath emulation, which is a ver-
sion of the multipath execution algorithm [16] adapted
to ROP chains. In particular, the emulator recognizes
the situation in which the stack pointer is modified
depending on the contents of the f lag register. At the
end of the emulation process, the list of all branch
points together with the f lag values at each of them is
obtained. The emulator is then restarted with the
instruction to take another path at the branch point.
Thus, the execution follows another path. The explo-
ration of branches is terminated when all branches
have been explored.

However, in presence of loops in the ROP chain,
the emulator could get trapped in an endless execution
path. The solution in this case is to keep track of the
number of occurrences of the stack pointer during the
execution of branch-related instructions. If this num-
ber is above a certain threshold, the emulator inverts
the control transfer to terminate the loop and explore
the remaining part of the control f low graph.

3.3.2. Trace splitting. In this phase, traces gener-
ated by the emulator are analyzed, duplicates are
removed, and unique blocks of code are extracted.
Each trace is cut at each branch point, and a new block
is generated and saved to a separate trace. As a result,
a set of traces associated with each “basic block” in the
chain is produced.

3.3.3. Unchaining. In this phase, all unconditional
jump instructions (ret, call, jmp) are removed
from the trace, and the contents of the sequentially
executed gadgets are joined into a single basic block
(C2). Then, the mov instructions are simplified by
computing their operands (e.g., mov rax, [rsp +
0x30]). The pop instructions are replaced by mov
instructions, and the required values are fetched from
the corresponding locations on the stack (C3).

3.3.4. Control f low graph recovery. In this phase,
all traces are joined into a unified graph representa-
tion. Then, this graph is translated into an x86 pro-
gram due to recognizing instructions associated with
conditional branches and replacing them by tradi-
tional instructions that use conditional jumps that use
the instruction pointer (C4).

The next task of this phase is to detect and re-roll
loops. ROP chains can contain return-oriented loops
and unrolled loops. In the first case, ROP instructions
are used to repeatedly execute the same block of gad-
gets on the stack with conditional exit. The unrolled
loops repeat the same sequence of gadgets for a prede-
termined number of times. The framework automati-
cally detects recurrent patterns and replaces them by a
more compact piece of assembler code that is a
semantically equivalent loop.

The resulting code is wrapped within a valid func-
tion prologue and epilogue and then included in a sep-
arate ELF file to enable one to explore it using tradi-
tional reverse engineering tools (such as IDA Pro [14]).

3.3.5. Binary optimization. The final step of the
analysis consists of applying standard compiler trans-
formations to simplify the generated assembler code in
the ELF file. In particular, dead code is removed, the
transformations described in Subsection 3.2.1 are
applied, and a purified and optimized version of the
exploit is generated (C1).

4. METHOD FOR ANALYZING
CODE-REUSE ATTACKS

The method for analyzing code-reuse attacks pro-
posed in this paper makes it possible to reconstruct the
semantics of a ROP chain and track the progress of
attack. Given the binary ROP chain, the sequence of
called gadgets is reconstructed. The found gadgets are
classified under semantic types and their parameter
values are determined. In addition, invocations of
functions and system calls are detected in the chain,
and their prototypes and values of arguments are
reconstructed. Note that in this paper our goal is to
explore at least one execution path of the ROP chain
rather than all execution paths. For this reason, the
proposed method does not take into account the con-
ditional branches in ROP chains.

4.1. Gadget Frame

To decompose a binary ROP chain into gadgets, we
introduce the concept of gadget frame, which is simi-
lar to the stack frame in x86. The chain of gadgets is
decomposed into frames. The gadget frame contains
the values of the gadget parameters (e.g., the value
loaded into a register from the stack by the gadget
LoadConstG) and the address of the next gadget. The
beginning of the frame is determined by the value of

42

PROGRAMMING AND COMPUTER SOFTWARE Vol. 45 No. 8 2019

VISHNYAKOV et al.

the stack pointer before the execution of the first gad-
get instruction.

In Fig. 4, the brace shows the boundaries of the
gadget frame (pop eax ; ret 8). This gadget loads
a value from the stack into eax, which corresponds to
the gadget type that loads a constant LoadConstG: eax
[esp + 0]. The size of the gadget frame is FrameS-
ize = 16, and the address of the next gadget is at off-
set 4 from the beginning of the frame (NextAddr =
[esp + 4]).

4.2. Classification of Gadgets

The classification of gadgets proposed in [17]
makes it possible to determine their semantics. The
gadget semantics is defined by a set of Boolean post-
conditions (gadget types), satisfied by the gadget’s
instructions, and the values of the postconditions’
parameters (Subsection 3.1). The set of gadget types
proposed by Schwartz et al. [8] (Table 1) turned out to
be insufficient for analyzing ROP chains found on the
Internet; so, it was expanded by additional types pre-
sented in Table 2. Furthermore, we added gadget types
that do not guarantee the control preservation (at the
bottom of Table 2).

A gadget is classified on the basis of the effects dis-
covered by its execution on random input data. The
gadget instructions are translated into an intermediate
representation. Then, the interpretation of the inter-
mediate representation is started. During the interpre-
tation, register and memory accesses are tracked. If a
register or memory region is read for the first time,
then the obtained value is generated randomly. As a
result of interpretation, the initial and final values of
registers and memory are obtained. Based on these
data, the gadget is tentatively assigned to a certain
type. For example, to be assigned to the type Mov-
eRegG, a pair of registers such that the initial value of
the first register equals the final value of the second

Fig.4. pop eax ; ret 8 gadget frame

Table 2. Extended gadget types. [Addr] denotes memory access at the address Addr, ∘ stands for a binary operation, a b
means that the final value of a equals the initial value of b, and X ∘ Y is short for X X ∘ Y.

Type Parameters Definition of semantics

JumpMemG AddrReg, Offset IP [AddrReg + Offset]
GetSPG OutReg OutReg SP
InitConstG OutReg, Value OutReg Value
InitMemG AddrReg, Value, Offset, Size [AddrReg + Offset] Value
NegG InReg, OutReg OutReg −InReg
ArithmeticConstG InReg, OutReg, Value, (+/) OutReg InReg Value

ShiftStackG Offset, (+/−) SP Offset

PushAllG — ([ESP – 4] EAX)
([ESP – 8] ECX)
([ESP – 12] EDX)
([ESP – 16] EBX)
([ESP – 20] ESP)
([ESP – 24] EBP)
([ESP – 28] ESI)
(EIP EDI)

Do not preserve control
JumpSPG — IP SP
CallG AddrReg IP AddrReg
CallMemG AddrReg, Offset IP [AddrReg + Offset]
IntG Value Invoke interrupt Value
SyscallG — System call

PROGRAMMING AND COMPUTER SOFTWARE Vol. 45 No. 8 2019

A METHOD FOR ANALYZING CODE 43

register must exist. As a result of the analysis, a list of
all types and their parameters to which the gadget can
be assigned is composed (the list of candidates). Then,
the interpretation is run several more times with differ-
ent input data, and the incorrectly determined types
are removed from the list.

As a result of the gadget classification, the gadget
semantic types and their parameters, as well as infor-
mation about the gadget frame (Subsection 4.1), i.e.,
the frame size (FrameSize) and the offset of the loca-
tion containing the address of the next gadget relative
to the beginning of the frame (NextAddr), are
obtained.

Note that a gadget is classified as a result of its exe-
cution on a limited set of inputs, which generally does
not guarantee that the semantics will hold when the
gadget is executed on arbitrary input data. For the
exact classification, the formal verification of the gad-
get semantics must be performed as described in
Subsection 3.1.1. Therefore, a gadget can be classified
incorrectly. However, the number of the incorrectly
classified gadgets after execution on 10 random inputs
is insignificant and is acceptable for reconstructing the
semantics of ROP chains.

4.3. Recovery of ROP Chain Semantics

The binary ROP chain is loaded on the shadow
stack. Using the information about the preceding gad-
get frame obtained as a result of the classification, the
gadgets in the chain are classified one after another.
The next gadget address offset relative to the beginning
of the frame and the frame size actually show where
the address of the next gadget to be classified should be
taken and where its frame begins, respectively. The
pointer of the shadow stack always points to the begin-
ning of the last classified gadget frame.

To reconstruct the values of registers and memory
before the gadget execution (e.g., to reconstruct the
arguments of the system or function call) we maintain
the shadow memory [15] that is common for all gad-
gets. Initially, the shadow memory is empty. Succes-
sively, for each classified gadget of the chain, the inter-
pretation process of its intermediate representation
with the shadow memory is run several times; the
shadow memory acts as the initial data of the register
and memory values. The read registers and memory
bytes, which are not contained in the shadow memory,
are generated randomly at each interpreter run. The
final values of the registers and memory that were the
same for all runs are updated in the shadow memory.

The values of all constants loaded by the ROP
chain can be recovered from the shadow stack. For this
purpose, the gadgets classification is insufficient
because it does not take into account the data on the
shadow stack but rather randomly generates the data
read from the stack. The classification of LoadConstG
gadget makes it possible to determine the register Out-

Reg into which the constant is loaded and the Offset at
which the constant is read from the stack. After the
classification of LoadConstG, OutReg value is loaded
from the shadow stack at the Offset from the shadow
stack pointer and added to the shadow memory.

In order to bypass DEP in 32-bit Windows pro-
grams, PushAllG (pushad; ret) is often used to call
the WinAPI function VirtualProtect [18] (which
makes the stack executable), then the control is trans-
ferred to the shellcode residing up the stack (Fig. 5).
The point is that the instruction pushad saves the
general-purpose registers on the stack. If these regis-
ters are preliminary initialized with proper values,
then the stack will contain an ordinary ROP chain.

Firstl, the address of NoOpG (ret) is loaded into
the register edi, and the address of the gadget that
should call the function VirtualProtect is loaded
into esi (e.g., jmp [eax]; in this case, the address
of the VirtualProtect cell in the table of imported
symbols is first loaded into eax). The VirtualProtect
arguments number 2–4 are loaded into the registers
ebx, edx, and ecx, respectively. The address of
ShiftStackG (pop eax; ret), which increments the
stack pointer, acts as the return address from Virtual-
Protect and is loaded into the register ebp. After exe-
cuting the pushad instruction, the values of these

Fig.5. State of the stack after executing the pushad
instruction.

44

PROGRAMMING AND COMPUTER SOFTWARE Vol. 45 No. 8 2019

VISHNYAKOV et al.

registers will be on the stack, as shown in Fig 5. In
turn, the execution of the instruction ret transfers con-
trol to the address of the gadget written to the last
saved register edi (ret). Next, the control goes to the
gadget that calls VirtualProtect(esp, ebx,
edx, ecx). After return from VirtualProtect,
the stack becomes executable, and the control goes to
the gadget which address was earlier loaded into the
register ebp (pop eax; ret). As a result, the gadget
JumpSPG (jmp esp) will be called, which transfers
control to an ordinary shellcode placed immediately
up the stack, which is now executable.

After the classification of PushAllG, the corre-
sponding values of the registers are written on the
shadow stack. In turn, the gadget JumpSPG is inter-

preted as the transfer of control to the ordinary shell-
code residing on the stack, and its bytes are disassem-
bled.

Note that a ROP chain can preliminary write a gad-
get to memory in order to use it later. We demonstrate
an example chain below. First, the machine code of
the gadget mov [eax + ebp * 4], ebx; ret
is loaded into the register edx. Then, this gadget is
saved to the memory address eax. Next, the gadget
parameters are loaded: ebx and ebp. Finally, the
control is transferred to the address eax, where
resides the preliminary saved gadget that writes the
value of the register ebx to the memory at the address
eax + ebp * 4.

pop edx; ret // edx = “\x89\x1c\xa8\xc3"
mov [eax], edx; ret
pop ebx; pop ebp; ret
jmp eax // mov [eax + ebp * 4], ebx; ret

Thus, if during analysis of a ROP chain, the address
of the next gadget is in the shadow memory, then the
gadget from the shadow memory is classified. If it
turns out after classification that this gadget cannot be
assigned to any type, then it is assumed that this is the
transfer of control to the ordinary shellcode that were
earlier saved to memory. The bytes of the shellcode in
the shadow memory are also disassembled.

4.3.1. Reconstruction of functions and system calls.
A function can be called from a ROP chain using the
gadgets JumpG, JumpMemG, CallG, and Call-
MemG, or its address can be simply placed on the
stack. The system call is made by the gadget IntG in
the 32-bit operating system and by SyscallG in the
64-bit operating system. The system call number and
the values of function and system call arguments are
recovered from the shadow memory. If a null-termi-
nated string resides at the argument address in the
shadow memory, then it is also recovered.

For ROP chains under Linux, the name of the sys-
tem call is found by its number. The called function
name can be recovered if the function was called at the
address that was read from the imported symbol table
(GOT in ELF and IAT in PE). In Linux, the proto-
types of functions and system calls are sought in man-
pages [19]; the prototypes of functions in Windows are
sought using the API Monitor [20].

5. SOFTWARE IMPLEMENTATION
We implemented the method described above as a

software tool. This tool gets at its input a binary ROP
chain and the executable file containing the gadgets
used in this chain. Note that in this paper we do not
seek the ROP chain in the exploit—this task should be
accomplished by an analyst. We support the following

formats of the executable files: ELF32, ELF64, PE32,
and PE32+. Chains that use gadgets from different
executable files are currently not supported.

5.1. Interpretation of the Intermediate Representation
of Gadget Instructions

In this paper, we use the intermediate representa-
tion of instructions developed in the Institute for Sys-
tem Programming, Russian Academy of Sciences
[21], which is in the SSA-form and has a three-address
code. The memory and register address spaces are rep-
resented by two byte arrays. The register address space
consists of all machine registers with account for their
overlapping and intersections. To take into account
side effects, the status word similar to the f lag register
in x86 is used.

The gadget instructions are translated into the
intermediate representation the interpretation of
which gives the initial and final values of the registers
and memory. Initially, for all address spaces, the maps
of loaded and stored values are empty. The instruc-
tions of the intermediate representation are replaced
by the equivalent blocks of x86-64 instructions. The
STORE instructions are replaced by the calls of the
function that updates the map of stored values. The
LOAD instructions are replaced by the calls of the
function that returns the current value. This function
performs one of the following actions:

• reads the value from the map of stored values if
the value is in the map;

• reads the value from the map of loaded values if
it is in the map of loaded values and not in the map of
stored values;

• inserts a randomly generated value in the map of
loaded values if the first access to given address occurs.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 45 No. 8 2019

A METHOD FOR ANALYZING CODE 45

Then, the resulting x86-64 code is executed. As a
result, the initial and final states of the address spaces
are obtained.

5.2. Analyzing the ROP Chain

The tool emulates loading of the executable file into
the virtual address space with all relocations applied. In
the loaded executable file, the instructions of each gad-
get at its address are disassembled up to the control
transfer instruction. The instructions thus obtained are
translated into the intermediate representation and are
classified. The arguments of functions and system calls
are recovered according to the calling convention from
the shadow memory; as the return value of the function,
a dummy value is added to the shadow memory. Then,
the shadow stack and the shadow memory are updated
as described in Subsection 4.3.

As a result, the tool produces a text file with all
sequentially called gadgets and their types and param-
eters listed. Moreover, the resulting file contains the
prototypes of the invoked functions and system calls
with their recovered argument values. If a ROP exploit
ends with the call of an ordinary shellcode, then its
disassembled instructions are also written to this file.

6. PRACTICAL RESULTS
We successfully used the method for analyzing

code-reuse attacks proposed in this paper to analyze
real-world ROP exploits found on the Internet. We
extracted the binary ROP chains by hand. Then, we
detected the executable file containing the gadgets
used in the chain.

Good starting points for finding ROP exploits were
the penetration testing framework Metasploit [22] and
the open exploit database EDB [23]. Unfortunately,
the executable file from which gadgets were gathered
into a chain is rarely attached to the exploit. At best,
the version of the program, the operating system, and
(or) distribution are indicated. For this reason, one
often has to seek the executable files by hand and
check if the gadgets addresses used in the exploit point
to the same assembly instructions as provided in the
exploit comments. To find old versions of Debian
packages, there is a useful project snapshot.debian.org

[24], which saves the current state of the Debian dis-
tribution several times a day, which significantly sim-
plifies the search of the old versions.

Table 3 contains the list of ROP exploits that were
successfully analyzed using the developed ROP chain
analysis tool. The time taken by the analysis did not
exceed a couple of seconds.

7. CONCLUSIONS

We proposed a method for analyzing code-reuse
attacks and implemented it as a software tool. This
method simplifies for an analyst the reverse engineer-
ing of ROP exploits. Given a binary ROP chain, the
list of called gadgets is recovered, and their function-
ality is semantically described in terms of a Boolean
predicate that must be always true after the gadget exe-
cution. Moreover, the prototypes and values of argu-
ments of the called functions and system calls are
reconstructed. Thus, an analyst can get a view of the
ROP chain semantics. We successfully used the imple-
mented method to analyze real-world ROP exploits
found on the Internet.

The method is based on the dynamic interpretation
of an intermediate representation of the ROP chain
instructions. The gadget semantics is recovered by
analyzing the effects of the gadget execution on vari-
ous random input data. To reconstruct the values of
functions and system calls arguments, we support a
shadow memory in the course of analysis.

A promising direction of future research is the sup-
port of the analysis of conditional branches and loops
in ROP chains. To improve the accuracy of recovering
the gadget semantics, one can use various formal veri-
fication techniques. A technical task is the support of
the analysis of ROP chains that use gadgets from a
number of executable files simultaneously.

FUNDING

This work was supported by the Russian Foundation for
Basic Research, project no. 17-01-00600.

Table 3. The list of analyzed ROP exploits

Application CVE number Platform Gadgets from

MongoDB CVE-2013-1892 Linux x86 mongod
Nagios3 CVE-2012-6096 Linux x86 history.cgi
ProFTPd CVE-2010-4221 Linux x86 proftpd
Nginx CVE-2013-2028 Linux x64 nginx
AbsoluteFTP CVE-2011-5164 Windows x86 MFC42.dll
ComSndFTP N/A 2012-06-08 Windows x86 msvcrt.dll

46

PROGRAMMING AND COMPUTER SOFTWARE Vol. 45 No. 8 2019

VISHNYAKOV et al.

REFERENCES
1. Belevantsev, A. and Avetisyan, A., Multi-level static

analysis for finding error patterns and defects in source
code, 2018.
https://doi.org/10.1007/978-3-319-74313-4_3

2. Gerasimov, A.Y., Directed dynamic symbolic execu-
tion for static analysis warnings confirmation, Program.
Comput. Software, 2018, vol. 44, no. 5, pp. 316-323.
https://doi.org/10.1134/S036176881805002X

3. Gerasimov, A. and Kruglov, L., Reachability confir-
mation of statically detected defects using dynamic
analysis, Proc. of the 11th International Conference on
Computer Science and Information Technologies, CSIT
2017, pp. 60-64.
https://doi.org/10.1109/CSITechnol.2017.8312141

4. Common Vulnerabilities and Exposures (CVE).
https://cve.mitre.org

5. Vulnerabilities (CVE) by year. https://www.cvede-
tails.com/browse-by-date.php

6. Nurmukhametov, A.R., Zhabotinskiy, E.A., Kurman-
galeev, S.F., Gaissaryan, S.S., Vishnyakov, A.V., Fine-
Grained Address Space Layout Randomization on
Program Load, Program. Comput. Software, 2018,
vol. 44, no. 5, pp. 363-370.
https://doi.org/10.1134/S0361768818050080

7. CWE-121: Stack-based Buffer Overflow.
https://cwe.mitre.org/data/definitions/121.html

8. Shacham, H., “The geometry of innocent f lesh on the
bone: Return-into-libc without function calls (on the
x86),” in Proc. of the 14th ACM Conf. on Computer and
Communications Security, 2007, pp. 552–561.

9. Schwartz, E.J, Avgerinos, T., and Brumley, D. Q: Ex-
ploit hardening made easy, Proc. of the 20th USENIX
Conference on Security, SEC’11, USENIX Association,
2011, p. 25.

10. Jager, I. and Brumley, D., Efficient directionless weak-
est preconditions. Technical Report CMU-CyLab-10-
002, 2010.

11. Lu, K., Zou, D., Wen, W., and Gao, D., deRop: Re-
moving return-oriented programming from malware,
Proc. of the 27th Annual Computer Security Applications
Conference, ACSAC’11, ACM, 2011, pp. 363–372.

12. Graziano, M., Balzarotti, D., and Zidouemba, A.,
ROPMEMU: A framework for the analysis of complex
code-reuse attacks, Proc. of the 11th ACM on Asia Con-
ference on Computer and Communications Security, ASIA
CCS’16, ACM, 2016, pp. 47–58.

13. Roemer, R., Bbuchanan, E., Shacham, H., and Sav-
age, S., “Return-oriented programming: Systems, lan-
guages, and applications,” ACM Trans. Inf. Syst. Secur.,
2012, vol. 15, no. 1, pp. 2:1–2:34.

14. IDA Pro. https://www.hex-rays.com/products/ida/
15. Nethercote, N. and Seward, J., How to shadow every

byte of memory used by a program, Proc. of the 3rd In-
ternational Conference on Virtual Execution Environ-
ments, VEE’07, ACM, 2007, pp. 65–74.

16. Moser, A., Kruegel, C., and Kirda, E., Exploring mul-
tiple execution paths for malware analysis, Proc. of the
2007 IEEE Symposium on Security and Privacy, SP’07,
IEEE Computer Society, 2007, pp. 231–245.

17. Vishnyakov, A.V., Classification of ROP gadgets, Trudy
ISP RAN, 2016, vol. 28, no. 6, pp. 27–36.

18. VirtualProtect function (Windows). https://msdn.mic-
rosoft.com/en-us/library/windows/desk-
top/aa366898(v=vs.85).aspx

19. The Linux man-pages project. https://www.ker-
nel.org/doc/man-pages/

20. API Monitor: Spy on API Calls and COM Interfaces.
http://www.rohitab.com/apimonitor

21. Padaryan, V.A., Soloviev, M.A., and Kononov, A.I.,
Modeling operational semantics of machine instruc-
tions, Trudy ISP RAN, 2010, vol. 19, pp. 165–186.

22. Metasploit Framework. https://github.com/rap-
id7/metasploit-framework

23. Exploit Database. https://www.exploit-db.com
24. snapshot.debian.org. http://snapshot.debian.org
25. Salwan, J., An introduction to the Return Oriented

Programming and ROP-chain generation, 2014.
http://shell-storm.org/talks/ROP_course_lecture_-
jonathan_salwan_2014.pdf

Translated by A. Klimontovich

SPELL; OK

