
Sydr-Fuzz

Continuous Hybrid Fuzzing and Dynamic Analysis for

Security Development Lifecycle

Alexey Vishnyakov infosec.exchange/@VishnyaSweet

Daniil Kuts

Vlada Logunova

Darya Parygina

Eli Kobrin

Georgy Savidov

Andrey Fedotov infosec.exchange/@anfedotoff

December 2, 2022

ISP RAS

arxiv.org/abs/2211.11595

https://infosec.exchange/@VishnyaSweet
https://infosec.exchange/@anfedotoff
https://arxiv.org/abs/2211.11595


Motivation

• 81% of 2400 audited commercial codebases contained at least one

vulnerability (Synopsys 2022 Report)

• Security development lifecycle (SDL) is an industry standard for

detecting program errors before deployment

• Hybrid fuzzing utilizes dynamic symbolic execution (DSE) and

outperforms coverage-guided fuzzing

• Automated continuous dynamic analysis pipeline allows to spot bugs

missed during manual fuzzing

1/16

https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/rep-ossra-2022.pdf


Dynamic Symbolic Execution with Sydr

= + +

• Sydr uses DynamoRIO as a DBI framework

• Sydr uses Triton as a DSE engine

• Triton uses Bitwuzla as an SMT solver

Dynamic symbolic execution:

• Each input byte is modeled by a free symbolic variable

• Instructions interpretation produce SMT formulas

• Symbolic state maps registers and memory to SMT formulas

• Path predicate contains taken branch constraints

• Sydr inverts branches to explore new paths and solves security

predicates to detect errors (out of bounds, integer overflow, etc.)

2/16

https://dynamorio.org/
https://triton-library.github.io/
https://bitwuzla.github.io/


Contributions

• Hybrid fuzzer Sydr-Fuzz: Sydr & libFuzzer/AFL++

• First integration between a DSE-tool and libFuzzer

• Symbolic pointers reasoning helps hybrid fuzzing

• Dynamic analysis pipeline: hybrid fuzzing, corpus minimization,

symbolic security predicates, coverage collection, and crash triaging

• Continuous hybrid fuzzing infrastructure

• Sydr-Fuzz outperforms coverage-guided fuzzers and proves to be

comparable to hybrid fuzzers on Google FuzzBench

• Crash triaging tool Casr is open-sourced: github.com/ispras/casr

3/16

https://github.com/ispras/casr


1. Sydr-Fuzz achieved higher coverage than other fuzzers

2. Sydr-Fuzz outperformed existing fuzzers on most benchmarks

Sydr+libFizzer vs 2xlibFuzzer

Sydr+AFL++ vs 2xAFL++

Sydr+AFL++ vs SymQEMU+AFL++

Sydr+AFL++ vs FUZZOLIC+AFL++

sydr-fuzz.github.io/fuzzbench
4/16

https://sydr-fuzz.github.io/fuzzbench


Sydr-Fuzz: Dynamic Analysis Pipeline

• Hybrid fuzzing with Sydr and libFuzzer/AFL++: sydr-fuzz run

• Corpus minimization: sydr-fuzz cmin

• Error detection (out of bounds, integer overflow, etc.) via symbolic

security predicates: sydr-fuzz security

• Crash triaging (deduplication, clustering, severity estimation) with

Casr: sydr-fuzz casr

• Collecting coverage: sydr-fuzz cov-report

5/16

https://github.com/ispras/casr


Sydr-Fuzz DEMO



OSS-Sydr-Fuzz: Hybrid Fuzzing for Open Source

github.com/ispras/oss-sydr-fuzz — fork of OSS-Fuzz for hybrid fuzzing

with Sydr-Fuzz

• 45 projects and 300+ fuzz targets

• During one year sydr-fuzz discovered 85 new bugs in 22 projects:

TensorFlow, PyTorch, Cairo (GTK), OpenJPEG, Poppler, ICU,

Tarantool, Torchvision, etc. All trophies on GitHub

• 13 issues were found by Sydr symbolic security predicates

6/16

https://github.com/ispras/oss-sydr-fuzz
https://github.com/google/oss-fuzz
https://github.com/ispras/oss-sydr-fuzz/blob/master/TROPHIES.md


Continuous Hybrid Fuzzing Infrastructure

7/16



Sydr & libFuzzer

• libFuzzer workers use shared corpus directory

• Sydr takes seeds to modify and puts generated seeds to the same

directory

• libFuzzer immediately loads seeds generated by Sydr

• Reloaded files are logged by libFuzzer: reviews.llvm.org/D100303000

• Sydr-Fuzz removes not reloaded seeds from corpus

• Scheduling seeds for Sydr:

• whether seed discovered new function

• whether seed brought new coverage

• whether seed increased libFuzzer features

• creation time/size

8/16

https://reviews.llvm.org/D100303


Sydr & AFL++

• Sydr is launched as a fake secondary AFL worker

• Sydr is executed on seeds from AFL main worker queue

• Sydr-Fuzz uses afl-showmap to minimize seeds generated by Sydr

before putting them in Sydr worker queue

• AFL main worker scans Sydr queue and imports useful seeds

• Seeds for Sydr are scheduled: new coverage, initial corpus seed,

file size, novelty

• Running AFL++ in parallel mode with automatically assigned

options (schedulers, MOpt, etc.)

9/16



Symbolic Security Predicates

• Out of bounds, integer overflow, etc.

• Security predicates are checked on minimized corpus after fuzzing

• Generated seeds are verified on sanitizers

• Deduplication of detected errors

10/16



Integer Overflow to Buffer Overflow in Rizin

symbols_size = (symbols_count + 1) * 2 * sizeof(struct symbol_t);

if (symbols_size < 1) {

ht_pp_free(hash);

return NULL;

}

if (!(symbols = calloc(1, symbols_size))) {

ht_pp_free(hash);

return NULL;

}

...

symbols[j].last = true;

11/16



CASR: Crash Triaging

• casr-san runs crashes on sanitized binary and creates reports

• Crash report contains stack trace, crash line, crash severity,

assembly, source, etc.

• casr-cluster -d deduplicates crashes based on stack trace hash

• casr-cluster -c performs hierarchical clustering of Casr reports

• casr-gdb generates crash reports for non-instrumented binaries

github.com/ispras/casr 12/16

https://github.com/ispras/casr


Average Number of Imported Seeds from Symbolic Engines

Application Sydr SymQEMU FUZZOLIC

freetype2 307.8 90.8 241.9

harfbuzz 58.8 34.8 21.3

lcms 139.3 192.5 203.5

libpng 30.4 25.7 23.9

libjpeg-turbo 17.5 13.5 14.6

libxml2 34.8 41.9 26.9

mbedtls 17.1 18.0 31.0

openthread 59.3 38.1 72.9

re2 2.5 2.0 0.1

sqlite3 59.7 88.2 96.6

vorbis 3.1 3.5 2.2

woff2 24.9 13.0 —

zlib uncompress 1.2 4.7 3.8

13/16



FuzzBench Configuration

• Mean code coverage (23 hours, 10 trials per fuzzer)

• 1 fuzzer + 1 Sydr

• Two binaries: sanitizers for fuzzer and no instrumentation for Sydr

• Invert branches in direct order for 2 minutes

• 10 second limit for single query and 60 seconds total solving limit

• Asynchronous solving during path predicate construction

• Path predicate construction is suspended when solving queue

contains 300 queries

• Explored paths cache for Sydr (QSYM-like)

• Symbolic addresses fuzzing by default, switched to full symbolic

pointers reasoning every 25th Sydr launch

sydr-fuzz.github.io/fuzzbench 14/16

https://sydr-fuzz.github.io/fuzzbench


FuzzBench Summary

• Sydr-Fuzz outperformed libFuzzer on 9 out of 14 benchmarks

• Sydr-Fuzz outperformed AFL++ on 9 out of 14 benchmarks

• Sydr-Fuzz outperformed SymQEMU on 7 out of 13 benchmarks

• Sydr-Fuzz outperformed FUZZOLIC on 6 out of 12 benchmarks

• Sydr-Fuzz reached higher coverage normalized score in all

experiments

sydr-fuzz.github.io/fuzzbench 15/16

https://sydr-fuzz.github.io/fuzzbench


Future Work

• Hybrid fuzzing for AARCH64 (Baikal-M) / RISC-V

• Dynamic analysis pipeline for Python via Atheris and Casr

• Security predicates for integer truncation, command injection, and

format string errors

16/16



Questions?

Telegram: @sydr fuzz

https://t.me/sydr_fuzz

	Appendix

