
Numeric Truncation Security Predicate

Timofey Mezhuev

Ilay Kobrin

Alexey Vishnyakov

Daniil Kuts

December 5, 2023

ISP RAS

Motivation

• Bugs and vulnerabilities may emerge during the development

lifecycle.

• Lots of companies integrate security development lifecycle (SDL)

into their workflow processes to detect errors.

• One of the most popular SDL technology is dynamic symbolic

execution (DSE).

1/19

Dynamic Symbolic Execution

• Dynamic Symbolic Execution is used for analyzing the program at

runtime by constructing formulas over symbolic variables.

• These formulas can be analyzed to obtain program execution

behavior.

• It is possible to find bugs in binary code with DSE building formulas

corresponding to error conditions, which we call security predicates.

2/19

Sydr

3/19

Sydr and Security Predicates

= + +

Sydr uses Triton as DSE engine, DynamoRIO to instrument binary code

instructions and Bitwuzla as SMT-solver.

Dynamic symbolic execution:

• Each input byte is modeled by a free symbolic variable.

• Instruction interpretation produce SMT formulas.

• Path predicate contains taken branch constraints.

• Sydr inverts branches to explore new paths and solves security

predicates (integer overflow, null pointer dereference, etc.).

• Sydr sends security predicate to Bitwuzla which generates the input

file to reproduce the error in case of successful solution of the

constructed formula.

4/19

https://triton.quarkslab.com/
https://dynamorio.org/
https://github.com/bitwuzla/bitwuzla

Numeric Truncation

• Numeric truncation error occurs when a value with the bigger type

size is converted to the smaller type.

• This error is typical for such programming languages as C/C++,

Java, etc.

• Numeric truncation can lead to incorrect program execution or even

to some vulnerabilities.

• For example, truncated value of allocated memory size may later

cause memory corruptions; or truncated value in loop condition may

lead to infinite loop.

5/19

Simple example of Numeric Truncation

• 64-bit program

• Input: +00000065536

• Numeric Truncation in

line 8

• Output: +00000000000

1 #include <stdio.h>

2 #include <stdint.h>

3

4 int

5 main() {

6 uint32_t a = 0;

7 scanf("%u", &a);

8 uint16_t b = a;

9 printf("%u\n", b);

10 return 0;

11 }

6/19

Basic Algorithm

• We analyze every symbolic instruction during the symbolic execution.

• When we meet instructions like mov, movsx, movzx, cbw, cwde,

cdqe, we check them for the numeric truncation error by building

and solving security predicate.

• For mov* instructions: if the initial size of the symbolic value,

located in register or memory, is bigger than the source operand size,

then we check the security predicate.

• For convert instructions: if the size of the symbolic value located in

rax register is bigger than the size of the value being extended after

cbw, cwde, cdqe instructions execution, then numeric truncation

error may occur.

7/19

Security Predicate formulas

Unsigned truncation example:

Signed truncation examples:

False signed truncation examples:

8/19

Security Predicate formulas

Formula in security predicate:

Unsigned formula: Signed formula:

not(φtrunc == bv(0, sz)) not((φtrunc == bv(0, sz)) ∨ (φtrunc == bv(1, sz)))

φtrunc — formula of bits being trucated

bv(0, sz) — bitvector of sz zeros, bv(1, sz) — bitvector of sz ones

• We get the signedness when the value was read with functions like

fscanf, scanf, etc., that use strto* functions inside.

• Otherwise, we get it with the backward slicing algorithm. We find

branching instructions like jl, ja, jb, etc. to guess signedness.

• If we couldn’t get the signedness, we build security predicate with

conjunction of signed and unsigned formulas.

9/19

False Positive Example

1 #include <stdio.h>

2 #include <stdint.h>

3

4 void

5 foo(int16_t a, int8_t b)

6 {

7 printf("%d%d", a, b);

8 }

9

10 int

11 main()

12 {

13 int32_t i32;

14 scanf("%d", &i32);

15 foo(i32, i32);

16 return 0;

17 }

1 00001255 <main>:

2 call 10c0 <__isoc99_scanf@plt>

3 add esp,0x10

4 mov eax,DWORD PTR [ebp-0x10]

5 movsx edx,al

6 mov eax,DWORD PTR [ebp-0x10]

7 cwde

8 push edx

9 push eax

10 call 120d <foo>

11 ...

12 0000120d <foo>:

13 ...

14 mov edx,DWORD PTR [ebp+0x8]

15 mov ecx,DWORD PTR [ebp+0xc]

16 mov WORD PTR [ebp-0xc],dx

17 mov edx,ecx

18 mov BYTE PTR [ebp-0x10],dl
10/19

Full Scheme (implementation)

input Shadow
registers

 Shadow
stack

cmp op1, op2
jcc label

cdqe/ cwde/cbw
pop

mov reg, reg/mem

push

mov mem, reg

Instructions

job 1

...

job N

Bitwuzla SMT
solvererror

input

Solving threads

binary
code

11/19

Shadow Stack

• To save the size of symbolic memory operands we have Symbolic

Shadow Stack. To fill the shadow stack we analyze mov, movsx,

movzx, push instructions.

• For mov, movsx, movzx instructions:

1. Check if the destination operand is memory and source operand is a

symbolic register.

2. Check if the source register is in shadow register map.

3. If so, fill the shadow stack with minimum of source operand size and

the size from shadow registers. Otherwise, fill it with the size of

source operand.

• For push we search the source operand register in shadow register

map, and then we fill the current sp value address in shadow stack

the same way as for mov, movsx, movzx instructions.

12/19

Shadow Registers

• To keep up-to-date the size of symbolic register operands we have

Symbolic Shadow Registers. To fill the shadow registers we analyze

mov, movsx, movzx, cbw, cwde, cdqe and pop instructions.

• For mov, movsx, movzx instructions:

1. Check if destination operand is register and source operand is

symbolic.

2. Check if the source register is in shadow register map (shadow stack).

3. If so, fill the shadow register with minimum of source operand size

and the size from shadow registers (shadow stack). Otherwise, fill it

with the size of source operand.

• In case of pop instruction we try to get symbolic size from shadow

stack for current sp value and then save it in shadow registers map

for the register operand.

13/19

Shadow Registers

• For cbw, cwde, cdqe instructions we update the shadow registers

map with the size being extended.

• In case of other instructions we get all the registers written by the

instruction and update the shadow registers map with the size of

written value. This is necessary to keep up-to-date actual symbolic

sizes when the arithmetic operations are performed.

14/19

Juliet Dynamic

• In previous works we have adapted Juliet test suite to make it

suitable for dynamic analysis. It builds all the tests for specified

CWE to binaries in 32-bit and 64-bit modes. Then it runs the tool

under test on all the binaries with the sample input data.

• We tested our numeric truncation security predicate on Juliet

Dynamic CWE-197 and our approach showed 100% accuracy.

github.com/ispras/juliet-dynamic 15/19

https://github.com/ispras/juliet-dynamic

Open Source Trophies

Sydr has found 12 new numeric truncation errors in open-source projects.

All of them were reported and fixed.

Project Detected errors number

nDPI 7

libpcap 2

FreeImage 1

LibTIFF 1

unbound 1

— approved by maintainers

— not approved by maintainers

github.com/ispras/oss-sydr-fuzz/blob/master/TROPHIES.md 16/19

https://github.com/ispras/oss-sydr-fuzz/blob/master/TROPHIES.md

nDPI

1 struct diameter_header_t {

2 u_int8_t com_code[3];

3 ...

4 };

5

6 typedef enum {

7 AC = 271,

8 AS = 274,

9 CC = 272,

10 CE = 257,

11 DW = 280,

12 DP = 282,

13 RA = 258,

14 ST = 275

15 } com_type_t;

16 ...

1 u_int16_t com_code =

2 diameter->com_code[2]

3 + (diameter->com_code[1] << 8)

4 + (diameter->com_code[0] << 8);

5

6 if (com_code == AC ||

7 com_code == AS ||

8 com_code == CC ||

9 com_code == CE ||

10 com_code == DW ||

11 com_code == DP ||

12 com_code == RA ||

13 com_code == ST)

14 return 0;

github.com/ntop/nDPI/pull/2034 17/19

https://github.com/ntop/nDPI/pull/2034

LibTIFF

1 static void TIFFReadDirectoryCheckOrder(

2 TIFF *tif, TIFFDirEntry *dir,

3 uint16_t dircount)

4 {

5 static const char module[]

6 = "TIFFReadDirectoryCheckOrder";

7 uint16_t m;

8 uint16_t n;

9 TIFFDirEntry *o;

10 m = 0;

11 for (n = 0, o = dir;

12 n < dircount;

13 n++, o++)

14 {

15 ...

16 }

17 }

1 if (o->tdir_tag < m)

2 {

3 TIFFWarningExtR(

4 tif, module,

5 "Invalid TIFF directory;"

6 "tags are not sorted in "

7 "ascending order");

8 break;

9 }

10 m = o->tdir_tag + 1;

gitlab.com/libtiff/libtiff/-/merge requests/512 18/19

https://gitlab.com/libtiff/libtiff/-/merge_requests/512

libpcap

1 uint16_t size;

2 ...

3 size = tlv->tlv_length;

4 if (size % 4 != 0)

5 size += 4 - size % 4;

6

7 if (size < sizeof(nflog_tlv_t)) {

8 /* Yes. Give up now. */

9 return;

10 }

11

12 if (caplen < size || length < size) {

13 /* No. */

14 return;

15 }

16 ...

github.com/the-tcpdump-group/libpcap/pull/1206 19/19

https://github.com/the-tcpdump-group/libpcap/pull/1206

Questions?

Security Predicate formulas

Unsigned formula: Signed formula:

not(φtrunc == bv(0, sz)) not((φtrunc == bv(0, sz)) ∨ (φtrunc == bv(1, sz)))

φtrunc = extract(high − 1, low , φvar) — significant bits being truncated from the original value

high — original symbolic size, low — size of resulting value, φvar — symbolic variable formula

bv(0, sz) — bitvector of sz zeros, bv(1, sz) — bitvector of sz ones

sz = high + low − 1 — size of φtrunc formula

nDPI

1 void ndpi_data_add_value(

2 struct ndpi_analyze_struct *s,

3 const u_int64_t value) {

4 if(!s)

5 return;

6 if(s->sum_total == 0)

7 s->min_val = s->max_val = value;

8 else {

9 if(value < s->min_val)

10 s->min_val = value;

11 if(value > s->max_val)

12 s->max_val = value;

13 }

14 s->sum_total += value,

15 s->num_data_entries++;

16 if(s->num_values_array_len) {

17 s->values[s->next_value_insert_index]

18 = value;

19 }

20 ...

21 } github.com/ntop/nDPI/pull/1999

https://github.com/ntop/nDPI/pull/1999

unbound

1 int sldns_str2wire_type_buf(const char * str,

2 uint8_t* rd, size_t* len)

3 {

4 uint16_t t = sldns_get_rr_type_by_name(str);

5 ...

6 }

7

8 sldns_rr_type

9 sldns_get_rr_type_by_name(const char *name)

10 {

11 ...

12 if (strlen(name) > 4 && strncasecmp(name,

13 "TYPE", 4) == 0) {

14 return atoi(name + 4);

15 }

16 ...

17 }

github.com/NLnetLabs/unbound/pull/909

https://github.com/NLnetLabs/unbound/pull/909

	Motivation
	DSE
	Background
	Numeric Truncation
	Basic Algorithm
	Security Predicate formulas
	False Positive Example
	Full Scheme
	Shadow Stack
	Shadow Registers
	Evaluation
	nDPI
	LibTIFF
	libpcap
	Appendix
	Security Predicate formulas appendix
	nDPI-appendix
	unbound-appendix

